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LETTER TO THE EDITOR 

An alternative field-theoretic setting for anyon systems 

S De Filippotts, C Lubrittot, R Pernat and F Sianot 
t Dipartin" di Fisica Teorica Univ-6 di Salemo, I-&1081 Bakmssi (Sa), Italy 
$ I", Sezione di Napoli, 1-80125 Naples. Italy 

Received 21 January 1994, in final form 25 Febmary 1994 

Abstract The cyon model for anyon systems is explicitly analysed using the quantum 
electrodynamics of partides carrying anomalous magnetic-dipole moments in (2+ 1) dimensions. 
Staristical interaction appears together with a further interaction term whose cut-off dependence 
refleas the unrenormalizable character of the how. 

The by now traditional field-theoretic setting for anyon systems is Chem-Simons (a) gauge 
theory [1,2]. On the other hand, a well known example exhibiting fractional statistics is a 
cyon, i.e. a composite object consisting of a charged particle bound to a magnetic flux tube 
[l, 31 or, equivalently, at a large enough space scale, a charged particle in (2+ 1) dimensions 
(ZD) endowed with a magnetic-dipole moment. This example, although very appealing, is, 
strangely enough, not used as a working model for 2~ systems of identical particles with 
fractional statistics. This is perhaps due to the feelig that a thorough Lagrangian description 
for a many-body cyon system interacting with the electromagnetic 0 field (with Maxwell 
action) is rather cumbersome. 

In this letter, it is shown that the simplicity of the 2D magnetiodipole interaction 
Lagrangian allows it to be used effectively. Once the EM potential is integrated out, in 
the spirit of Feynman's approach to QED [4], a generalization of the ?.D Coulomb plus 
current-current interaction, including statistical interaction, is obtained. Furthermore, the 
usual Hamiltonian for a system of anyons in terms of integer-statistical particles interacting 
through fictitious gauge potentials is deduced in the non-relativistic limit. It should be 
stressed that the procedure is quite distinct from the elimination of CS gauge potentials 
[1,2] since the present physical model carries local gauge degrees of freedom. 

The motivation is twofold. On one hand, the procedure leads, without using cs terms, 
to the anyon-model Hamiltonians currently used in several physical applications [5,6].  On 
the other hand, this procedure highlights the appearance of the factor two in passing from 
the cyon magnetic flux to that in the model Hamiltonian. This is not irrelevant as these 
factors are stressed so often in the literature, e.g. they are stressed at least nine times in [7]. 

It is worth stressing that the 20 EM potential used in this context should not be confused 
with the actual EM potential. In fact, ZD electrodynamics is experimentally relevant only in 
the presence of translational invariance along a given direction. This is not the case, even 
approximately, in the actual condensed-matter systems to which fractional statistics may, in 
principle, be relevant 
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To begin with, consider that the interaction energy between paaicles carrying electric 
charge e and magnetic-dipole moments p with the pseudoscalar magnetic field B is given 
by 

where p denotes the electric-charge surface density. 
Contrary to what happens in (3 + 1) dimensions with the Bargmann-Michel-Telegdi 

equation [SI, the classical theory of particles with spin carrying magneticdipole moments 
in ZD dimensions is quite simple and can be quantized straightforwardly; the expression 
for the unrenormalizable relativistic interaction Lagrangian, reducing to equation (1) when 
particles are at rest, is 

LdP = -(p/Zec) d2~&”Drju( r )For(~) .  (2) 1 
Here, E denotes, as usual, the completely antisymmetric tensor density, j ”  is the electric- 
threecurrent density (cp, jz* j y )  and 

FWv AV., - 

is the m-field strength. It should be.remarked that, as expected, this interaction breaks 
chiral invariance when particles with spin are present in ZD [I]. If the Coulomb gauge 

V .  A = &A’+ &A2 0 

is fixed, A0 can be solved in terms of charge density and the contribution to the dipole- 
interaction Lagrangian (2) containing 

Ao(T) = -(l /Zx) d2r’p(d) In([? - T’I) s 
i.e. 

gives one half of the expected statistical interaction (once self-interaction is subtracted as 
usual) and is included in the matter Lagrangian. Following Feynman [4], the effective action 
is given by 

se = s,, + I (‘w 
+ sdp + s~.)) (4) 

where At denotes the transverse vector potential (which in ZD has only one mode per wave 
vector), D[AJ D [ A ] s ( V .  A), N is a normalization factor and Smt denotes the matter 
action. 
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Here 

S,, f d2r dtA,(r. t)(-at/c2 + V2)A,(r, f) 6) J 
denotes the action of the EM radiation 

and 

S,. = S ( l / c ) j ( r .  t )  . At(T,t)dZrdt (7) 

is the minimal interaction action subtracted from the term giving rise to the Coulomb 
interaction together with the term originally present in the EM action 141. This 2D Coulomb 
interaction is meant to be included in S,, in equation (4u). 

The Gaussian functional integration in equation (4) gives I = Jd'r dt'l: with 

where 0;' = (-a:/c' +Vz);' denotes the Feynman propagator (jo appears in equation (8) 
since current conservation was used). Expanding the product in equation (8) gives three 
terms. The p-independent term 

(where j t  denotes the purely transverse part of the electric-current density) is the original 
Feynman expression for the interaction between electric currents. The term in p2 can be 
written as the sum of a (divergent) self-interaction (if hard-core particles are considered 
as usual when dealing with anyons) to be subtracted just l i e  the Coulomb self-interaction 
terms and a divergent interaction involving the longitudinal part of the electric current j,: 

This divergence is to be removed by an explicit ultraviolet cut-off A as expected from the 
unrenormdizability of the magnetic-dipole interaction. 

From a physical viewpoint, this cut-off reminds us that the model considered here is 
only meaningful at length scales larger than the single cyon (or equivalently larger than the 
quasiparticle excitations currently described in terms of anyons). Then, reasonable values 
for A-1 are of the order of the linear dimensions of the considered extended object To be 
specific, the interaction action bong involving longitudinal currents can be written as 
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On one hand, this term is small at low energy for the presence of the (~jl~~j~~/c?) factor. 
On the other hand, its evaluation gives hOog = l d t  Ll.,., with 

( I W  
where Jo, 51 denote B e d  functions, CY = -2n COS(@I + @z), B = 2n COS(@I) COS(@Z), 

@ I  is the angle between (TI - TZ) and j1 and @z is the angle between (TI - TZ) and j z .  
Since the asymptotic behaviour as 171 - T Z ~  --f 03 of the most slowly decreasing part 

of equation ( l lb)  (i.e. the divergent part as A -+ CO ) is 

then this interaction can be reasonably neglected when dealing with low energies and 
densities where this term, for instance, is dominated by the ZD Coulomb interaction (and 
even by the actual electric interaction in a ZD condensed-matter system). 

Finally, the linear term in the magnetic-dipole moment p reads 

which, since VZAo = --p gives another contribution similar to that coming from L&ip 
in equation (3), thus leading to the correct statistical action which is usually obtained by 
starting with a cs term [l]. 

If, to be specific, the non-relativistic-matter Lagrangian is used and the current- 
current interactions are removed, as usual with non-relativistic QM, then the corresponding 
Hamiltonian is 

where 

which, when self-interaction is subtracted, becomes 

If, in particular, in equations (13), the limit e + 0, p + w with ep held constant is 
considered, the free-anyon Hamiltonian in the cs gauge is recovered [1,2]. It should be 
stressed that, from the present viewpoint, the seemingly unpleasant presence of not just one 
potential but of as many statistical potentials as particles is no more mysterious than the 
absence of the self-interactions in the Coulombic potential. Parenthetically, the clearest view 
of the fictitious gauge terms in the Hamiltonian (13). when dealing with gauge M o m ,  
is, in the authors’ opinion, obtained by considering them as components of a unique gauge 
potential in the 2N-dimensional configuration space [5]. 

Finally, since the present approach is based on an explicit classical formulation, it is a 
natural setting in which to analyse. at a pseudoclassical level, the transformation from the 
cs gauge to the multivalued gauge L1.21. This should hopefully be. realized by extending 
the approach described in [9] to suitably generalized Grassmann algebras [IO]. 
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